research Market Intelligence /marketintelligence/en/news-insights/research/natural-language-processing-part-i-primer content
BY CONTINUING TO USE THIS SITE, YOU ARE AGREEING TO OUR USE OF COOKIES. REVIEW OUR
PRIVACY & COOKIE NOTICE
Log in to other products

Login to Market Intelligence Platform

 /


Looking for more?

Contact Us

Request a Demo

You're one step closer to unlocking our suite of comprehensive and robust tools.

Fill out the form so we can connect you to the right person.

  • First Name*
  • Last Name*
  • Business Email *
  • Phone *
  • Company Name *
  • City *

* Required

In this list

Natural Language Processing, Part I: Primer

Concentration and Cross Holdings of Chinese Banks

EMEA Struggles To Attract PE Investment As Year's End Approaches

Public Companies Going Private

Banking, Corporations, Insurance, Professional Services

The Market Intelligence Platform Experience


Natural Language Processing, Part I: Primer

Sep. 14 2017 — Unveiling The Hidden Information In Earnings Calls

Given the growing interest in NLP among investors, we are publishing this primer to demystify many aspects of NLP and provide three illustrations, with accompanying Python code, of how NLP can be used to quantify the sentiment of earnings calls. In our first example, sector-level sentiment trends are generated providing insights around inflection points and accelerations. The other two illustrations are: i) stock-level sentiment changes and forward returns, and ii) language complexity of earnings calls.

  • What is NLP? – We demystify common NLP terms and provide an overview of general steps in NLP.
  • Why is NLP important? – Forty zettabytes (10^21 bytes) of data are projected to be on the internet by 2020, out of which more than eighty percent of the data are unstructured in nature, requiring NLP to process and understand.
  • How can NLP help me? – We derive insights from earnings call transcripts via NLP measuring industry-level sentiment trends or language complexity of earnings calls, and much more.
  • Where do I start? – Code for each use case is enclosed, enabling users to replicate the sentiment analysis.

Natural Language Processing, Part I: Primer

Download the full report

David Pope, CFA, S&P Global Market Intelligence’s Managing Director of Quantamental Research, recently discussed using natural language processing to unlock new insights in corporate earnings sentiment analysis. Click the player to view the video.