This report, our seventh on the subject since 1967, provides a comprehensive review of the technology and economics of ethylene production by steam cracking. Special attention is given to establishing yield patterns and energy efficiencies that are representative of modern ethylene plant practices. The report reviews and discusses new technologies disclosed in recent patents, technical journals, and technical data on ethylene plant technologies gathered by SRI from process licensors. The economics review covers all the principal feedstocks from ethane to vacuum gas oil. All of the evaluated processes are commercially important.

Capital and production cost estimates to produce ethylene from light feedstocks (ethane, 70 ethane-30 propane, propane, n-butane, and light naphtha) are based on a conventional steam cracking process that uses a modified front-end deethanization product separation sequence recently developed by C.F. Braun.

Similar cost estimates for liquid feedstocks - wide range (W-R) naphtha, atmospheric gas oil (AGO), and vacuum gas oil (VGO) - are based on M.W. Kellogg’s Millisecond® cracking process, followed by a front-end demethanization product separation sequence. For AGO and VGO, the cost estimates are for high severity cracking; for W-R naphtha, the cost estimates are for both high and mild severity crackings plus one case in which a C4 butadiene extraction raffinate stream is recycled to the ethylene cracker.

For those who are in the ethylene business, the report will be useful for its comparative technologies; for those considering entry into the business, it will be useful for its selection of technologies and feedstocks.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 INDUSTRY ASPECTS 2-1
 ECONOMIC ASPECTS 2-1
 TECHNICAL ASPECTS 2-3

3 INDUSTRY STATUS 3-1
 1989 PRODUCTION AND FUTURE OUTLOOK 3-1
 INDUSTRY GROWTH PATTERN 3-1
 PRESENT AND PROJECTED PLANT CAPACITIES 3-2
 END USE PATTERNS FOR ETHYLENE 3-5
 PRICES 3-5
 SUMMARY 3-5

4 ADVANCES IN ETHYLENE TECHNOLOGY 4-1
 PATENTS 4-1
 Modifications to the Conventional Steam Cracking Process 4-1
 Autogenic and Fluid Bed Processes 4-2
 Catalytic Reaction Processes 4-2
 Ethanol Dehydration Processes 4-3
 Cracked Gas Quenching and Quench Cooler Design 4-3
 Metallurgy 4-4
 Product Separation Systems 4-4
 TECHNICAL ARTICLES 4-5
 Pinch Technology 4-5
 Replacing Trays with Metal Packings 4-5
 New Alloys for Pyrolysis Furnace Construction 4-6
 Computer Control 4-6
 ADVANCED TECHNOLOGIES OF PROCESS LICENSORS 4-8
 C. F. Braun 4-8
 Cracking Furnace and Quench Cooler Designs 4-9
 Product Separation System Improvements 4-9
4 ADVANCES IN ETHYLENE TECHNOLOGY (Concluded)

M. W. Kellogg 4-16
- Cracking Furnace and Quench Cooler Designs 4-16
- Product Separation 4-20

Linde AG 4-20
- Feedstock Pretreatment Technology 4-20
- Cracking Furnace and Quench Cooler Designs 4-22
- Product Separation 4-23

Lummus Crest 4-23
- Feedstock Pretreatment Technology 4-23
- Cracking Furnace and Quench Cooler Designs 4-23
- Product Separation 4-27

Stone & Webster Engineering 4-28
- Cracking Furnace and Quench Cooler Designs 4-28
- Other S&W Cracking System Development 4-30
- Product Separation 4-31

TPL/TP/KTI 4-34
- Feedstock Pretreatment Process 4-36
- Cracking Furnace and Quench Cooler Designs 4-36
- Product Separation 4-37

5 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING
WITH FRONT-END DEETHANIZATION 5-1

REVIEW OF DESIGN BASES 5-1
- Cracking Yields 5-1
- Product Separation 5-2

PROCESS DESCRIPTION 5-2
- Cracking and Quenching (Section 100) 5-2
- Compression and Deacidification (Section 200) 5-6
- Deethanization and Demethanization (Section 300) 5-6
- Product Separation (Section 400) 5-7
- Refrigeration (Section 500) 5-8
- Gasoline Hydrotreating (Section 600) 5-8

PROCESS DISCUSSION 5-26

COST ESTIMATES 5-26
CONTENTS (Continued)

5 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING
WITH FRONT-END DEETHANIZATION (Continued)

Capital Costs 5-26
Production Costs 5-27
DISCUSSION OF COSTS 5-28

6 ETHYLENE FROM OTHER LIGHT FEEDSTOCKS BY CONVENTIONAL
CRACKING WITH FRONT-END DEETHANIZATION 6-1

CHARACTERISTICS OF FEEDSTOCKS 6-1
COST ESTIMATES 6-4
Ethane Feedstock 6-4
70 Ethane-30 Propane Feedstock 6-5
n-Butane Feedstock 6-5
Light Naphtha Feedstock 6-5
Discussion of Costs 6-5

7 ETHYLENE FROM NAPHTHA BY MILISECONDSM CRACKING
WITH FRONT-END DEMETHANIZATION 7-1

REVIEW OF PROCESS 7-1
Cracking Conditions and Furnace Design 7-1
Feedstocks and Yields 7-3
REVIEW OF DESIGN BASES AND ASSUMPTIONS 7-3
PROCESS DESCRIPTION 7-3
Cracking and Quenching (Section 100) 7-9
Compression and Demethanization (Section 200) 7-10
Product Separation (Section 300) 7-11
Refrigeration (Section 400) 7-11
Gasoline Hydrotreating (Section 500) 7-12
Steam Distribution 7-12
PROCESS DISCUSSION 7-29
COST ESTIMATES 7-29
Capital Costs 7-29
Production Costs 7-30
DISCUSSION OF COSTS 7-31
CONTENTS (Concluded)

8 ETHYLENE FROM OTHER LIQUID FEEDSTOCKS BY MILLISECONDSM CRACKING WITH FRONT-END DEMETHANIZATION 8-1
CHARACTERISTICS OF FEEDSTOCKS 8-1
COST ESTIMATES 8-2
 Naphtha Feedstock at Mild Severity 8-2
 Atmospheric Gas Oil Feedstock 8-3
 Vacuum Gas Oil Feedstock 8-3
 Discussion of Costs 8-3

9 ETHYLENE FROM NAPHTHA BY MILLISECONDSM CRACKING WITH C\textsubscript{4} RAFFINATE RECYCLE 9-1
REVIEW OF YIELD DATA 9-1
REVIEW OF DESIGN BASES 9-3
COMPARISON OF FEEDSTOCKS AND YIELDS 9-4
COST ESTIMATE BASES 9-4
COST ESTIMATES 9-5
DISCUSSION OF COSTS 9-5

APPENDIX A: ADVANCES IN ETHYLENE TECHNOLOGY
PATENT SUMMARY TABLES A-1

APPENDIX B: DESIGN AND COST BASES B-1

APPENDIX C: CITED REFERENCES C-1

APPENDIX D: PATENT REFERENCES BY COMPANY D-1

APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>PRESENT AND FUTURE ETHYLENE CAPACITY BY GEOGRAPHIC REGION</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>WORLD ETHYLENE PLANT HISTORICAL OPERATING RATE AND FUTURE PROJECTION</td>
<td>3-4</td>
</tr>
<tr>
<td>4.1</td>
<td>FRONT-END DEMETHANIZATION SEPARATION SEQUENCE</td>
<td>4-11</td>
</tr>
<tr>
<td>4.2</td>
<td>FRONT-END DEPROPANIZATION SEPARATION SEQUENCE</td>
<td>4-12</td>
</tr>
<tr>
<td>4.3</td>
<td>FRONT-END DEETHANIZATION SEPARATION SEQUENCE</td>
<td>4-14</td>
</tr>
<tr>
<td>4.4</td>
<td>HEAT-PUMP LOW PRESSURE C₂ SPLITTER</td>
<td>4-15</td>
</tr>
<tr>
<td>4.5</td>
<td>MILLISECOND FURNACE DESIGN BY M.W. KELLOGG</td>
<td>4-17</td>
</tr>
<tr>
<td>4.6</td>
<td>COMPARISON OF MILLISECOND AND CONVENTIONAL CRACKING PRODUCT YIELDS</td>
<td>4-19</td>
</tr>
<tr>
<td>4.7</td>
<td>SPECIFIC ENERGY CONSUMPTIONS OF ETHYLENE PLANTS DESIGNED BY M. W. KELLOGG</td>
<td>4-21</td>
</tr>
<tr>
<td>4.8</td>
<td>ETHYLENE YIELDS AS A FUNCTION OF MOLECULAR COLLISION PARAMETER</td>
<td>4-24</td>
</tr>
<tr>
<td>4.9</td>
<td>EVOLUTION OF SHORT RESIDENCE TIME (SRT) CRACKING COIL DESIGN BY LUMMUS CREST</td>
<td>4-25</td>
</tr>
<tr>
<td>4.10</td>
<td>STONE & WEBSTER CRACKING COIL CONFIGURATION DESIGN COMPARISON</td>
<td>4-29</td>
</tr>
<tr>
<td>4.11</td>
<td>STONE & WEBSTER USC TYPE CRACKING COIL AND EFFLUENT COOLING SYSTEM</td>
<td>4-32</td>
</tr>
<tr>
<td>4.12</td>
<td>QUICK CONTACT (QC) REACTION SYSTEM</td>
<td>4-33</td>
</tr>
<tr>
<td>4.13</td>
<td>STONE & WEBSTER ADVANCED RECOVERY SYSTEM (ARS) FOR OLEFINS</td>
<td>4-35</td>
</tr>
<tr>
<td>5.1</td>
<td>ETHYLENE FROM PROPANE BY CONVENTIONAL STEAM CRACKING WITH FRONT-END DEETHANIZATION PROCESS FLOW DIAGRAM</td>
<td>E-3</td>
</tr>
<tr>
<td>5.2</td>
<td>ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION STEAM DISTRIBUTION DIAGRAM</td>
<td>5-25</td>
</tr>
<tr>
<td>Illustration</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Ethylene from propane by conventional steam cracking with front-end deethanization. Effect of operating level and plant capacity on product value. 5-35</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Ethylene from ethane by conventional steam cracking with front-end deethanization. Effect of operating level and plant capacity on product value. 6-15</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Ethylene from 70 ethane-30 propane by conventional steam cracking with front-end deethanization. Effect of operating level and plant capacity on product value. 6-16</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Ethylene from n-butane by conventional steam cracking with front-end deethanization. Effect of operating level and plant capacity on product value. 6-17</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Ethylene from light naphtha by conventional steam cracking with front-end deethanization. Effect of operating level and plant capacity on product value. 6-18</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Effect of contact time on steam cracking yields. 7-2</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Ethylene from naphtha by millisecond cracking with front-end demethanization. Process flow diagram. E-15</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Ethylene from naphtha by millisecond cracking with front-end demethanization. Steam distribution diagram. 7-19</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Ethylene from naphtha by millisecond cracking with front-end demethanization, high severity. Effect of operating level and plant capacity on product value. 7-37</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Ethylene from naphtha by millisecond cracking with front-end demethanization, mild severity. Effect of operating level and plant capacity on product value. 8-11</td>
<td></td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Concluded)

8.2 ETHYLENE FROM ATMOSPHERIC GAS OIL BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY EFFECT OF OPERATING LEVEL AND PLANT CAPACITY ON PRODUCT VALUE 8-12

8.3 ETHYLENE FROM VACUUM GAS OIL BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY EFFECT OF OPERATING LEVEL AND PLANT CAPACITY ON PRODUCT VALUE 8-13

9.1 ETHYLENE FROM NAPHTHA BY MILISECOND CRACKING WITH C₃ RAFFINATE RECYCLED, HIGH SEVERITY EFFECT OF OPERATING LEVEL AND PLANT CAPACITY ON PRODUCT VALUE 9-12
TABLES

2.1 SUMMARY OF ETHYLENE ECONOMICS FROM LIGHT FEEDSTOCKS CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION 2-7
2.2 SUMMARY OF ETHYLENE ECONOMICS FROM LIQUID FEEDSTOCKS MILLISECOND℠ CRACKING WITH FRONT-END DEMETHANIZATION 2-8
3.1 WORLD ETHYLENE PLANT CAPACITIES AND PLANT LOCATIONS 3-6
3.2 ETHYLENE PRODUCTION IN 1989 AND PLANT CAPACITY GROWTH PROJECTION BY COUNTRY 3-14
3.3 PROSPECTIVE NEW ETHYLENE PROJECTS IN THE WORLD 3-17
3.4 ETHYLENE END USE PATTERNS 3-20
4.1 ADVANCED IN ETHYLENE TECHNOLOGY PATENT SUMMARY A-3
4.2 OPERATING RESULTS OF COMPUTER CONTROL VERSUS MANUAL CONTROL 4-8
4.3 OVERALL MATERIAL BALANCES FOR LIGHT FEEDSTOCKS OF C. F. BRAUN’S ETHYLENE TECHNOLOGY 4-10
4.4 TYPICAL FURNACE OUTLET YIELDS BY M. W. KELLOGG’S MILLISECOND PROCESS 4-18
4.5 COMPARISON OF FURNACE OUTLET YIELDS BY LOW AND HIGH SELECTIVITY CRACKING COILS OF LUMMUS WITH ETHANE FEEDSTOCK, 65% CONVERSION 4-26
5.1 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION DESIGN BASES AND ASSUMPTIONS 5-3
5.2 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION FURNACE OUTLET CRACKING YIELDS 5-5
5.3 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION STREAM FLOWS 5-10
5.4 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PROPYLENE-ETHYLENE CASCADE REFRIGERANT FLOWS 5-18
5.5 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION MAJOR EQUIPMENT 5-19
5.6 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION UTILITIES SUMMARY 5-24
5.7 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION TOTAL CAPITAL INVESTMENT 5-29
5.8 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION CAPITAL INVESTMENT BY SECTION 5-30
5.9 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PRODUCTION COSTS 5-32
5.10 ETHYLENE FROM PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION FEEDSTOCK AND BY-PRODUCT PRICES (MID-1990) 5-34
6.1 ETHYLENE FROM OTHER LIGHT FEEDSTOCKS BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION COMPOSITIONS OF GASEOUS FEEDSTOCKS 6-2
6.2 ETHYLENE FROM OTHER LIGHT FEEDSTOCKS BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION CHARACTERISTICS OF LIGHT NAPHTHA FEEDSTOCK 6-3
6.3 ETHYLENE FROM ETHANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PRODUCTION COSTS 6-7
6.4 ETHYLENE FROM 70 ETHANE-30 PROPANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PRODUCTION COSTS 6-9
6.5 ETHYLENE FROM N-BUTANE BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PRODUCTION COSTS 6-11
6.6 ETHYLENE FROM LIGHT NAPHTHA BY CONVENTIONAL CRACKING WITH FRONT-END DEETHANIZATION PRODUCTION COSTS 6-13
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>COMPARISON OF MILLISECOND AND CONVENTIONAL CRACKING YIELDS FOR LIQUID FEEDSTOCKS</td>
<td>7-4</td>
</tr>
<tr>
<td>7.2</td>
<td>COMPARISON OF MILLISECOND AND CONVENTIONAL CRACKING YIELDS FOR GASEOUS FEEDSTOCKS</td>
<td>7-5</td>
</tr>
<tr>
<td>7.3</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION DESIGN BASES AND ASSUMPTIONS</td>
<td>7-6</td>
</tr>
<tr>
<td>7.4</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY MAJOR EQUIPMENT</td>
<td>7-13</td>
</tr>
<tr>
<td>7.5</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY UTILITIES SUMMARY</td>
<td>7-18</td>
</tr>
<tr>
<td>7.6</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION STREAM FLOWS</td>
<td>7-20</td>
</tr>
<tr>
<td>7.7</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION ETHYLENE-PROPYLENE REFRIGERANT STREAM FLOWS</td>
<td>7-28</td>
</tr>
<tr>
<td>7.8</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY TOTAL CAPITAL INVESTMENT</td>
<td>7-32</td>
</tr>
<tr>
<td>7.9</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY CAPITAL INVESTMENT BY SECTION</td>
<td>7-33</td>
</tr>
<tr>
<td>7.10</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, HIGH SEVERITY PRODUCTIONS COSTS</td>
<td>7-35</td>
</tr>
<tr>
<td>8.1</td>
<td>ETHYLENE FROM OTHER LIQUID FEEDSTOCKS BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION CHARACTERISTICS OF LIQUID FEEDSTOCKS</td>
<td>8-2</td>
</tr>
<tr>
<td>8.2</td>
<td>ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION, MILD SEVERITY PRODUCTION COSTS</td>
<td>8-5</td>
</tr>
</tbody>
</table>
8.3 ETHYLENE FROM ATMOSPHERIC GAS OIL BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION PRODUCTION COSTS
TABLES (Concluded)

8.4 ETHYLENE FROM VACUUM GAS OIL BY MILLISECOND CRACKING WITH FRONT-END DEMETHANIZATION PRODUCTION COSTS 8-9

9.1 ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH C₄ RAFFINATE RECYCLE COMPOSITION OF C₄ RAFFINATE II STREAMS 9-3

9.2 ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH C₄ RAFFINATE RECYCLE C₄ RAFFINATE II STEAM CRACKING YIELDS 9-6

9.3 ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH C₄ RAFFINATE RECYCLE COMPARISON OF C₄ RECYCLED AND NON-C₄ RECYCLED YIELDS AND ANNUAL MATERIAL BALANCES 9-8

9.4 ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH C₄ RAFFINATE RECYCLE PRODUCTION COSTS 9-9

9.5 ETHYLENE FROM NAPHTHA BY MILLISECOND CRACKING WITH C₄ RAFFINATE RECYCLE RECYCLE OF C₄ RAFFINATE II PRICES USED BY ARCO AND LYONDELL (NOVEMBER 1986) 9-11