

Vinyl Chloride Monomer via Johnson Matthey Davy Process

PEP Review 2026-09

Vijayanand Rajagopalan, Director, Process Economics Program

To learn more or to request a demo, visit www.spglobal.com/commodityinsights.

Table of contents

1	Introduction	7
2	Summary	8
	Technoeconomic aspects	8
3	Industry status	10
	Capacity	10
	World supply/demand	10
	Future projects	11
4	Technology review	13
	Properties	13
	Process chemistry	13
	Catalysis	14
	Mechanism	15
	Development of gold-based catalysts	16
	PRICAT™ mercury-free catalyst (MFC) system	17
	VCM via acetylene hydrochlorination	18
	The Johnson Matthey Davy process for VCM	19
	Health and safety considerations	21
5	Process economics	22
	Process description	23
	Section 100: VCM synthesis	23
	Section 200: VCM purification	23
	Process discussion	25
	Feedstock	25
	Hydrochlorination	25
	VCM purification	26
	Energy integration	26
	Material of construction and storage	26
	Process effluents	26
	Carbon and water footprints	26
	Cost estimates	28
	Fixed capital costs	28
	Production costs	30
Appendix A — Design and cost basis		33
	Design conditions	34
	Cost basis	34
	Capital investment	34

Project construction timing	35
Available utilities	35
Production costs	36
Effect of operating level on production costs	36
Appendix B — Cited references	37
Appendix C — Process flow diagrams	39

Tables

Table 2.1 VCM via Johnson Matthey Davy process — Key process parameters and economic summary	9
Table 3.1 World supply/demand for VCM	11
Table 4.1 Properties of VCM	13
Table 4.2 Comparison of catalyst systems for acetylene hydrochlorination	17
Table 5.1 Johnson Matthey Davy process for VCM production — Design bases and assumptions	22
Table 5.2 Johnson Matthey Davy process for VCM production — Major streams flow (lb/h)	24
Table 5.3 Johnson Matthey Davy process for VCM production — Utilities summary	25
Table 5.4 Johnson Matthey Davy process for VCM production — Carbon and water footprints	26
Table 5.5 Johnson Matthey Davy process for VCM production — Major equipment	27
Table 5.6 Johnson Matthey Davy process for VCM production — Total capital investment	29
Table 5.7 Johnson Matthey Davy process for VCM production — Capital investment by section	30
Table 5.8 Johnson Matthey Davy process for VCM production — Variable costs	31
Table 5.9 Johnson Matthey Davy process for VCM production — Production costs	32

Figures

Figure 2.1 VCM via Johnson Matthey Davy process — Block flow diagram	8
Figure 4.1 Catalyst systems for VCM hydrochlorination	15
Figure 4.2 Strategies for enhancing gold catalysts	16
Figure 4.3 PVC and VCM from coal — Process flow	18
Figure 4.4 Johnson Matthey Davy VCM process — Block flow diagram	19
Figure 4.5 Johnson Matthey Davy VCM process — Process schematic	20

Appendix C Figures

Figure C1 Process flow diagram for Section 100 — VCM synthesis	40
Figure C2 Process flow diagram for Section 200 — VCM purification	41

Glossary

bara	Bar absolute
BFW	Boiler feedwater
bhp	Brake horsepower
BLI	Battery limits investment
°C	Degrees Celsius
CAS	Chemical Abstracts Service
Capex	Capital expenditure
¢/kWh	Cents per kilowatt-hour
¢/lb	Cents per pound
¢/Mgal	Cents per thousand gallons
¢/TR-h	Cents per refrigeration ton-hour
CW	Cooling water
\$/h	Dollars per hour
\$/Mlb	Dollars per thousand pounds
\$/t	Dollars per metric ton
EDC	Ethylene dichloride
EPC	Engineering procurement and construction
°F	Degrees Fahrenheit
FOB	Free/freight on board
ft	Feet
ft dia	Feet diameter
G&A	General and administrative
gal	Gallons
G/L	Gas/liquid
gpm	Gallons per minute
IARC	International Agency for Research on Cancer
ISBL	Inside battery limits
IUPAC	International Union of Pure and Applied Chemistry
kg	Kilograms
kg/h	Kilograms per hour
kJkg ⁻¹ K ⁻¹	Kilojoules per kilogram per Kelvin
kJ/mol	Kilojoules per mole
KO	Knockout
kPa	Kilopascals
kWh	Kilowatt-hour
lb	Pounds
lb/h	Pounds per hour
LPS	Low-pressure steam
LTCS	Low-temperature carbon steel
MFC	Mercury-free catalyst
mm	Millimeters
MMBtu/h	Million British thermal units per hour
mmHg	Millimeters of mercury
MMlb/y	Million pounds per year
MMt	Million metric tons
MMt/y	Million metric tons per year
mol%	Molar percent
OSBL	Outside battery limits
OSHA	Occupational Safety and Health Administration
PEP	Process Economics Program
ppm	Parts per million
psia	Pounds per square inch absolute
psig	Pounds per square inch gauge
PVC	Polyvinyl chloride
Ref.	Refrigerant

ROI	Return on investment
sq ft	Square feet
SS	Stainless steel
TEM	Transmission electron microscopy
TFC	Total fixed capital
TR-h	Refrigeration ton-hour
t/t	Metric tons per metric ton
t/y	Metric tons per year
USGC	US Gulf Coast
VCM	Vinyl chloride monomer
vol%	Volume percent
wt%	Weight percent
y	Years

Abstract

Vinyl chloride monomer (VCM) is an important chemical intermediate used exclusively to produce polyvinyl chloride (PVC) resins. The Johnson Matthey (JM) Davy process for producing VCM is acetylene-based and uses a novel mercury-free catalyst technology, in response to the Minamata Convention on Mercury, a global treaty aimed at reducing mercury emissions. This Process Economics Program (PEP) review presents a comprehensive technological and economic assessment of the JM Davy technology. The assessment of the production economics in this review is for a plant at a US Gulf Coast location, with an annual capacity of 1,102.3 million pounds, or 500,000 metric tons of VCM. An iPEP Navigator module, an Excel-based computer costing model developed by S&P Global Energy, is also available with this review to allow quick calculation of the process economics for other major regions of the world.

This technoeconomic assessment of the balanced process for VCM production is PEP's independent interpretation of the commercial process based on information presented in the open literature, such as patents or technical articles, and it may not reflect in whole or in part the actual plant configuration. We do, however, believe that our assessment is sufficiently representative of the process and process economics within the range of accuracy necessary for an economic evaluation of the conceptual process design. This review will be a valuable resource for planners, producers, and designers looking for an authentic evaluation of the capital and production costs for VCM production.

Contacts

Vijayanand Rajagopalan

Director, Process Economics Program
vijayanand.rajagopa@spglobal.com

Rajiv Narang

Executive Director, Global Head, Process Economics Program
rajiv.narang@spglobal.com

CONTACTS

Europe, Middle East, Africa: +44 (0) 203 367 0681

Americas: +1 800 332 6077

Asia-Pacific: +60 4 296 1125

www.spglobal.com/commodityinsights/en

www.spglobal.com/en/enterprise/about/contact-us.html

© 2026 by S&P Global Inc. All rights reserved.

S&P Global, the S&P Global logo, S&P Global Energy, and Platts are trademarks of S&P Global Inc. Permission for any commercial use of these trademarks must be obtained in writing from S&P Global Inc.

You may view or otherwise use the information, prices, indices, assessments and other related information, graphs, tables and images ("Data") in this publication only for your personal use or, if you or your company has a license for the Data from S&P Global Energy and you are an authorized user, for your company's internal business use only. You may not publish, reproduce, extract, distribute, retransmit, resell, create any derivative work from and/or otherwise provide access to the Data or any portion thereof to any person (either within or outside your company, including as part of or via any internal electronic system or intranet), firm or entity, including any subsidiary, parent, or other entity that is affiliated with your company, without S&P Global Energy's prior written consent or as otherwise authorized under license from S&P Global Energy. Any use or distribution of the Data beyond the express uses authorized in this paragraph above is subject to the payment of additional fees to S&P Global Energy.

S&P Global Energy, its affiliates and all of their third-party licensors disclaim any and all warranties, express or implied, including, but not limited to, any warranties of merchantability or fitness for a particular purpose or use as to the Data, or the results obtained by its use or as to the performance thereof. Data in this publication includes independent and verifiable data collected from actual market participants. Any user of the Data should not rely on any information and/or assessment contained therein in making any investment, trading, risk management or other decision. S&P Global Energy, its affiliates and their third-party licensors do not guarantee the adequacy, accuracy, timeliness and/or completeness of the Data or any component thereof or any communications (whether written, oral, electronic or in other format), and shall not be subject to any damages or liability, including but not limited to any indirect, special, incidental, punitive or consequential damages (including but not limited to, loss of profits, trading losses and loss of goodwill).

ICE index data and NYMEX futures data used herein are provided under S&P Global Energy's commercial licensing agreements with ICE and with NYMEX. You acknowledge that the ICE index data and NYMEX futures data herein are confidential and are proprietary trade secrets and data of ICE and NYMEX or its licensors/suppliers, and you shall use best efforts to prevent the unauthorized publication, disclosure or copying of the ICE index data and/or NYMEX futures data.

Permission is granted for those registered with the Copyright Clearance Center (CCC) to copy material herein for internal reference or personal use only, provided that appropriate payment is made to the CCC, 222 Rosewood Drive, Danvers, MA 01923, phone +1-978-750-8400. Reproduction in any other form, or for any other purpose, is forbidden without the express prior permission of S&P Global Inc. For article reprints contact: The YGS Group, phone +1-717-505-9701 x105 (800-501-9571 from the U.S.).

For all other queries or requests pursuant to this notice, please contact S&P Global Inc. via email at ci.support@spglobal.com.