

Hydrogen Peroxide

PEP Review 2026-04

Roberto Tapia, Associate Director, Process Economics Program

Susan Bell, Director, Process Economics Program

To learn more or to request a demo, visit www.spglobal.com/commodityinsights.

Table of contents

Abstract	7
1 Introduction	8
2 Summary	9
Industrial aspects	9
Technical aspects	9
Economic aspects	10
3 Industry status	12
Uses by sector	12
Hydrogen peroxide global consumption	13
Recent and upcoming projects	14
4 Technology review	15
Anthraquinone autoxidation (AO) process	15
Process chemistry	15
Review of the process	18
Working solutions	19
Catalytic hydrogenation	20
Oxidation	22
Hydrogen peroxide recovery and purification	22
Working solution regeneration	23
Hydrogenation catalyst regeneration	23
Hydrogen peroxide concentration	24
Hydrogen peroxide solution stabilization	24
Electrolysis	25
Direct synthesis	25
Biotechnological approaches	25
5 Economics of hydrogen peroxide production	26
Introduction	26
Process description	26
Section 100: Working solution hydrogenation and oxidation	27
Section 200: Hydrogen peroxide recovery and purification	27
Section 300: Hydrogen peroxide concentration	28
Section 400: Working solution regeneration	28
Process discussion	33
Plant capacity	33
Hydrogenation reactor	33
Oxidation reactor	34

Working solution	34
Hydrogen peroxide extraction	34
Hydrogen peroxide concentration	34
Product storage	34
Materials of construction	35
Environmental	35
Cost estimates	36
Fixed capital cost	36
Production cost	39
Appendix A — Design and cost basis	42
Design conditions	43
Cost basis	43
Capital investment	43
Project construction timing	44
Available utilities	44
Production costs	45
Effect of operating level on production costs	45
Appendix B — Cited references	46
Appendix C — Process flow diagrams	49

Tables

Table 2.1 Cost summary — Hydrogen peroxide production	10
Table 2.2 Effect of plant size and cost summary — Total capital investment	10
Table 2.3 Comparison of process economics with PEP Report 68B ^a	11
Table 3.1 Hydrogen peroxide concentration and major end users	12
Table 3.2 Hydrogen peroxide consumption growth rate	13
Table 3.3 Recent projects	14
Table 4.1 Working solutions composition for anthraquinone processes	20
Table 4.2 Hydrogen peroxide solution stabilizers published on relevant patents	24
Table 5.1 Hydrogen peroxide production by autoxidation process — Design bases and assumptions	26
Table 5.2 Hydrogen peroxide production by autoxidation process — Major stream flows	28
Table 5.3 Hydrogen peroxide production by autoxidation process — Major equipment	31
Table 5.4 Hydrogen peroxide production by autoxidation process — Utility summary	33
Table 5.5 Hydrogen peroxide production by autoxidation process — Summary of major waste streams	35
Table 5.6 Hydrogen peroxide production by autoxidation process — Carbon footprint	35
Table 5.7 Hydrogen peroxide production by autoxidation process — Water footprint	36
Table 5.8 Hydrogen peroxide production by autoxidation process — Total capital investment	37
Table 5.9 Hydrogen peroxide production by autoxidation process — Total capital investment by section	38
Table 5.10 Hydrogen peroxide production by autoxidation process — Variable costs	40
Table 5.11 Hydrogen peroxide production by autoxidation process — Production costs	41

Figures

Figure 2.1 World consumption of hydrogen peroxide — 2025	9
Figure 3.1 World consumption by application of hydrogen peroxide — 2025	12
Figure 3.2 World consumption of hydrogen peroxide (kta)	14
Figure 4.1 Block diagram of the anthraquinone process	19
Figure 4.2 Different types of hydrogenation reactors	21

Appendix C Figures

Figure C1 Hydrogen peroxide production by autoxidation process — Process flow diagram (sheet 1 of 4)	50
Figure C2 Hydrogen peroxide production by autoxidation process — Process flow diagram (sheet 2 of 4)	51
Figure C3 Hydrogen peroxide production by autoxidation process — Process flow diagram (sheet 3 of 4)	52
Figure C4 Hydrogen peroxide production by autoxidation process — Process flow diagram (sheet 4 of 4)	53

Glossary

\$	Dollars
\$(/ton/y)	Dollar per metric ton per annum hydrogen peroxide production capacity
\$/h	Dollars per hour
¢/kg	Dollar cents per kilogram
¢/lb	Dollar cents per pound
AHQ	Anthrahydroquinone
AO	Autoxidation
AQ	Alkylanthraquinone
bara	Bar absolute
barg	Bar gauge
BLI	Battery limits investment
BFW	Boiler feedwater
bhp	Brake horsepower
capex	Capital expenditure
ChW	Chilled water
CW	Cooling water
dia	Diameter
EAQ	2-ethylanthraquinone
EAHQ	2-ethylanthrahydroquinone
EMEA	Europe, the Middle East, and Africa
FOB	Freight on board
gal	Gallons
gpm	Gallons per minute
G&A	General and administrative
h	Hours
kcal	Kilocalorie
kta	Thousand metric tons per annum
kg/h	Kilograms per hour
kg/kg	Kilogram per kilogram
kW	Kilowatts
kWh	Kilowatt-hours
lb/h	Pounds per hour
lb/lb	Pounds per pound
lb/y	Pounds per year
LHSV	Liquid hourly space velocity
m ³	Cubic meter
MMBtu	Millions British thermal units
MMBtu/h	Million British thermal units per hour
MMlb/y	Million pounds per year
Mlb/h	Thousand pounds per hour
MW	Molecular weight
opex	Operating expenditure
PEP	Process Economics Program
psig	Pounds per square inch gauge
RDC	Rotating disc contactor
RTO	Regenerative thermal oxidizer
ROI	Return on investment
sq ft	Square feet
STM	Steam
t	Metric ton
TFC	Total fixed capital
THAQ	Tetrahydroanthraquinone
THEAQ	Tetrahydroethylanthraquinone
THEAHQ	2-ethyl-5,6,7,8-tetrahydroanthra-hydroquinone
TOP	Tris(2-ethylhexyl) phosphate

USGC	US Gulf Coast
WS	Working solution
wt%	Weight percent
WWT	Wastewater treatment
y	Year

Abstract

The conventional anthraquinone autoxidation (AO) process remains the global standard for hydrogen peroxide production. This process involves the catalytic hydrogenation of alkylated anthraquinones to their corresponding anthrahydroquinones, which are subsequently oxidized to regenerate the parent anthraquinone and produce hydrogen peroxide. This review presents an updated techno-economic evaluation of the conventional anthraquinone AO process for hydrogen peroxide production based on new patents and other publications. We last evaluated this process in PEP Report 68B (published in 1992) for hydrogen peroxide at a plant with a capacity of 20,400 metric tons per year (45 million pounds per year). This review presents the estimated operating expenditure (opex) and capital expenditure (capex), along with the process flow diagram (PFD), material balance, and major equipment list with specifications, for a standalone 220,000 metric tons per day (440 million pounds per year) hydrogen peroxide plant based on the anthraquinone process. This is Process Economics Program's (PEP) independent assessment based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. It is believed that these sources are sufficient to represent the process and process economics within the range of accuracy necessary for the economic evaluation of the conceptual process design of this technology.

Contacts

Roberto Tapia

Associate Director, Process Economics Program
roberto.tapia@spglobal.com

Susan Bell

Director, Process Economics Program
susan.bell@spglobal.com

Rajiv Narang

Executive Director, Global Head, Process Economics Program
rajiv.narang@spglobal.com

CONTACTS

Europe, Middle East, Africa: +44 (0) 203 367 0681

Americas: +1 800 332 6077

Asia-Pacific: +60 4 296 1125

www.spglobal.com/energy

www.spglobal.com/en/enterprise/about/contact-us.html

© 2026 by S&P Global Inc. All rights reserved.

S&P Global, the S&P Global logo, S&P Global Energy, and Platts are trademarks of S&P Global Inc. Permission for any commercial use of these trademarks must be obtained in writing from S&P Global Inc.

You may view or otherwise use the information, prices, indices, assessments and other related information, graphs, tables and images ("Data") in or on this publication only for your personal use or, if you or your company has a license for the Data from S&P Global Energy and you are an authorized user, for your company's internal business use only. You may not publish, reproduce, extract, distribute, retransmit, resell, create any derivative work from, use in any artificial intelligence system, and/or otherwise provide access to the Data or any portion thereof to any person (either within or outside your company, including as part of or via any internal electronic system or intranet), firm or entity, including any subsidiary, parent, or other entity that is affiliated with your company, without S&P Global Energy's prior written consent or as otherwise authorized under license from S&P Global Energy. Any use or distribution of the Data beyond the express uses authorized in this paragraph above is subject to the payment of additional fees to S&P Global Energy.

S&P Global Energy, its affiliates and all of their third-party licensors disclaim any and all warranties, express or implied, including, but not limited to, any warranties of merchantability or fitness for a particular purpose or use as to the Data, or the results obtained by its use or as to the performance thereof. Data in this publication includes independent and verifiable data collected from actual market participants. Any user of the Data should not rely on any information and/or assessment contained therein in making any investment, trading, risk management or other decision. S&P Global Energy, its affiliates and their third-party licensors do not guarantee the adequacy, accuracy, timeliness and/or completeness of the Data or any component thereof or any communications (whether written, oral, electronic or in other format), and shall not be subject to any damages or liability, including but not limited to any indirect, special, incidental, punitive or consequential damages (including but not limited to, loss of profits, trading losses and loss of goodwill).

ICE index data and NYMEX futures data used herein are provided under S&P Global Energy's commercial licensing agreements with ICE and with NYMEX. You acknowledge that the ICE index data and NYMEX futures data herein are confidential and are proprietary trade secrets and data of ICE and NYMEX or its/their licensors/suppliers, and you shall use best efforts to prevent the unauthorized publication, disclosure or copying of the ICE index data and/or NYMEX futures data.

Permission is granted for those registered with the Copyright Clearance Center (CCC) to copy material above for internal reference or personal use only, provided that appropriate payment is made to the CCC, 222 Rosewood Drive, Danvers, MA 01923, phone +1-978-750-8400. Reproduction in any other form, or for any other purpose, is forbidden without the express prior permission of S&P Global Inc. For article reprints contact: The YGS Group, phone +1-717-505-9701 x105 (800-501-9571 from the U.S.).

For all other queries or requests pursuant to this notice, please contact S&P Global Inc. via email at support.energy@spglobal.com.