Environment and Safety Series

Microplastics: A Profile

PEP Review 2025-08

Rathi R, Associate Analyst, Process Economics Program

To learn more or to request a demo, visit www.spglobal.com/commoditvinsights.

Table of contents

1	Introduction	16
2	Summary	22
3	What are microplastics?	25
Or	igin of the concept	25
De	efinitions used for microplastics	25
	European Chemicals Agency (ECHA)	25
	International Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP)	25
	International Organization for Standardization (ISO)	25
	Marine Strategy Framework Directive (MSFD)	25
	National Oceanic and Atmospheric Administration (NOAA)	25
	Registration, Evaluation and Authorisation of Chemicals (REACH)	26
	State of California	26
	US Environmental Protection Agency (US EPA)	26
	Conclusion	26
	Further reading	26
Cla	assification and characteristics of microplastics	26
	Based on type and source	26
	Based on size	27
	Based on shape	28
	Based on polymer type and additives	31
	Based on color	32
	Based on location or sampling condition	34
	Based on biofouling	34
	Conclusion	35
	Further reading	35
Ch	nallenges in microplastic research	35
	High variability	35
	Lack of harmonized sampling and characterization	35
	Toxicity and health effects	36
	Limited geographical coverage of sampling	37
	Uncertainty regarding microplastics	37
	Determination of an appropriate risk assessment framework	38
	Conclusion	38
	Further reading	38
4	Uses	39
5	Fate, transport and exposure	43
Sc	ources of microplastics	43

Primary and secondary microplastics	44
Primary microplastics	44
Secondary microplastics	48
Point and nonpoint sources	54
Point sources	55
Nonpoint sources	55
Conclusion	56
Further reading	56
Entry, fate and transport pathways of microplastics	56
Microplastics in fluvial environments	56
Surface water	56
Marine water	60
Groundwater	66
Wastewater	67
Microplastics in soil environments	68
Transport by water and runoff	70
Transport by wind	71
Transport by soil organisms	71
Microplastics in sediment	71
Microplastics in the air	72
Microplastics in biota	75
Uptake in plants	75
Uptake in terrestrial and aquatic organisms	76
Conclusion	78
Further reading	78
Exposure	79
In human populations	79
Dietary or oral exposure	80
Respiratory exposure	81
Dermal exposure	82
In terrestrial and aquatic organisms	82
Conclusion	83
Further reading	83
6 Effects of microplastic pollution	84
Chemical effects	84
Chemicals added intentionally	84
Common additives	84
Additives of concern	85
Contaminants adsorbed from the environment	98
POPs and persistent, bioaccumulative and toxic compounds	99
Pathogens, invasive species and microbial contamination	100

Conclusion	102
Further reading	102
Physical effects	102
Human health	102
Cellular and genetic effects	104
Circulatory, cardiovascular and neurological effects	104
Metabolic, gastrointestinal and endocrine effects	106
Respiratory effects	106
Immunological effects	107
Cancer	108
Reproductive effects	108
Wildlife health	108
Conclusion	110
Further reading	111
Environmental and ecological effects	111
Soil and terrestrial ecosystems	111
Soil physicochemical properties	111
Soil-plant-microbe interactions	113
Plant and blue carbon ecosystems	114
Plants	114
Blue carbon and coral reef ecosystems	117
Climate change and global warming	117
Greenhouse gas emissions	118
Oil and natural gas demand	120
Plastic demand	120
Oceans' climate mitigation potential	121
Global temperature and weather phenomena	121
Impact of climate change on microplastics	121
Projections for microplastic emissions	123
Conclusion	124
Further reading	125
Socioeconomic effects	125
UN Sustainable Development Goals	125
Socioeconomic costs	126
Public health	128
Waste management	128
Ecosystem services	130
Social and environmental justice	131
Agricultural and global food supply	132
Global water quality and supply	132
Conclusion	133
Further reading	133

7 Regulation	134
Global regulations	134
United Nations	134
Global treaty to end plastic pollution	134
UNEP resolutions addressing microplastic pollution	136
Sustainable Development Goals pertaining to (micro)plastics	137
Other significant programs	137
Ocean Plastics Charter ¹	137
Significant developments pertaining to (micro)plastic pollution	138
Basel Convention	138
FAO Voluntary Code of Conduct on the Sustainable Use and Management of Plastics in Agricultu	ıre (VCoC) 138
MARPOL 73/78 Annex V amendment	138
Helsinki Convention	138
International Coral Reef Initiative	138
Conclusion	138
Further reading	139
Regional regulations	139
Asia	139
India	139
Japan	140
Mainland China	140
South Korea	141
Taiwan	142
Europe	142
A European Strategy for Plastic in a Circular Economy	142
Marine Strategy Framework Directive	143
Registration, Evaluation and Authorisation of Chemicals (REACH)	143
European Chemicals Agency	143
Regulation on preventing pellet losses to reduce microplastic pollution	144
EU Soil Strategy for 2030	144
Important European directives	144
European countries	146
North America	147
Canada	147
United States	148
Oceania	149
Australia	149
New Zealand	149
Outcomes of regional bans and programs	150
Conclusion	150
Ubiquity and transboundary nature of (micro)plastic pollution	150

Lack of technical capacity and incentives	151
Limitations of blanket bans as a policy approach	151
Further reading	151
8 Mitigation, management and treatment of microplastics	152
Methods for microplastic identification and detection	152
Conclusion	154
Further reading	154
Methods for microplastic abatement or treatment	154
Physical methods	155
Coagulation and agglomeration	155
Electrocoagulation	155
Filtration-membrane technology	156
Granular filtration	156
Magnetic extraction	157
Photodegradation and photocatalysis	157
Thermal processes	158
Chemical methods	161
Electrochemical oxidation	161
Fenton process and Fenton-based AOPs	161
Sol-gel method	161
Biological and biotechnological methods	162
Factors affecting microbial degradation	163
Enzymatic degradation of microplastics	165
Algal degradation of microplastics	166
Bacterial degradation of microplastics	167
Fungal degradation of microplastics	168
Microbial consortia degradation of microplastics	169
Genetic engineering	170
Treatment technologies for specific media	170
Drinking water	170
Wastewater	171
Air	174
Reports and reviews by PEP on plastic waste abatement or treatment	174
Conclusion	175
Further reading	176
Methods for prevention and mitigation	176
Enhanced waste disposal and management	177
Reduction	177
Reusing and repurposing	177
Recycling	177
Recovery of waste-to-energy and feedstock	185

Landfilling	186
Design and production efficiency	187
Circular economy	188
Market-based instruments	189
Extended producer responsibility	190
Plastic taxes, levies, incentives and bans	190
Ecolabeling	190
Plastic credits	190
Plastic alternatives	190
Biodegradable plastics	192
Bio-based polymers	192
Behavioral changes	195
Reducing plastic consumption	195
Education and awareness	196
Prevention or mitigation strategies for specific sources	196
Wastewater treatment enhancements	196
Textiles and microfibers best practices	197
Tire and brake wear best practices	199
Stormwater control	201
Companies working on microplastic abatement or mitigation	203
Conclusion	204
Further reading	205
Appendix A — Microplastics resources	206
Resources	207
Appendix B — Cited references & further reading	208
Tables	
Table 3.1 Common microplastic shapes and their main applications Table 3.2 Commonly used additives in plastic materials	29 32
Table 4.1 Common synthetic plastics used globally	41
Table 5.1 Categories of microplastics and their applications Table 5.2 Degradation and fragmentation process of plastic debris in aquatic/marine environments	43 53
Table 5.3 Characterization of microplastics in the marine ecosystem	60
Table 5.4 Uptake and transport of microplastics in different plant species Table 6.1 Potential health risks of PFAS exposure in humans	76 89
Table 6.2 Heavy metals and their effects on human health	94
Table 6.3 Potential health effects in humans from microplastic exposure	103
Table 6.4 Interaction between microplastics and contaminants on animal health Table 6.5 Effects of microplastics on the physicochemical properties of different soils	109 112
Table 6.6 Effects of microplastics on soil-plant-microbe interactions	116
Table 6.7 GHGs produced from microplastic degradation	120
Table 6.8 Potential challenges posed by microplastic pollution on UN SDGs Table 6.9 Summary of quantifiable and currently unquantified costs imposed on society by	125
the plastic lifecycle	128

Table 7.1 Timeline of events toward the global treaty to end plastic pollution	135
Table 7.2 Summary of four UNEA resolutions on microplastics	136
Table 7.3 Summary of Indian initiatives related to microplastics	139
Table 7.4 Summary of other EU directives directly/indirectly addressing microplastics	144
Table 7.5 Microplastic regulations in some European countries	146
Table 7.6 State-wise regulations on microplastics	148
Table 8.1 Techniques for identification and detection of microplastics	152
Table 8.2 Physical treatment technologies for treatment/removal of microplastics	159
Table 8.3 Microplastic degradation by AOPs	161
Table 8.4 Chemical treatment technologies for removal of microplastics	161
Table 8.5 Summary of enzymes involved in microbial degradation of microplastics	165
Table 8.6 Examples of microplastics degraded by microorganisms	169
Table 8.7 Objectives, processes, and performance of WWTPs	172
Table 8.8 PEP reports/reviews on plastic waste abatement or treatment	174
Table 8.9 Applications for different plastic waste	182
Table 8.10 An overview of key transnational circular economy policy initiatives for plastics	188
Table 8.11 Common renewable feedstock used for bioplastics production	191
Table 8.12 Common plastic alternatives	193
Table 8.13 Alternatives for some common plastic items	195
Table 8.14 Potential wastewater treatment enhancements	196
Table 8.15 Best management practices for microfiber shedding prevention	198
Table 8.16 Best management practices for TRWP shedding prevention	199
Table 8.17 Companies working on microplastic abatement or mitigation	203

Figures

Figure 1.1 Life cycle of a plastic material	16
Figure 1.2 Sample images of different microplastics found in natural environments	17
Figure 1.3 A plot of a 29-year (2022–50) forecast for the volume of global annual plastic production	20
Figure 1.4 A plot of a 29-year (2022–50) forecast for the volume of global annual plastic waste	
generation	20
Figure 3.1 Schematic representation of microplastic size linkage to different processes	28
Figure 3.2 Different microplastic shapes found in sediments	29
Figure 3.3 Proportional frequency of microplastic shape vs. sampling condition	30
Figure 3.4 Proportional frequency of microplastic polymer composition vs. sampling condition	31
Figure 3.5 Proportional frequency of microplastic color by sampling condition	33
Figure 3.6 Images of littered orange and black plastic samples of different ages	34
Figure 3.7 Flow chart for handling environmental samples in microplastic analyses	36
Figure 4.1 Classification of plastics	39
Figure 5.1 Origin of primary and secondary microplastics	44
Figure 5.2 SEM photo of a microbead	45
Figure 5.3 Microplastic nurdles in the environment	46
Figure 5.4 Plastic mulch films covering a corn field	47
Figure 5.5 Main types and sources of secondary microplastics	48
Figure 5.6 Tire wear particles	50
Figure 5.7 Share of total plastic leakage into the environment in 2019	51
Figure 5.8 Mechanism of microplastic degradation in the environment	54
Figure 5.9 Point and nonpoint sources of microplastics	55
Figure 5.10 Microplastic concentrations in surface water, by lake (including Lake St. Clair)	58
Figure 5.11 Microplastic concentrations in stormwater collected from catchments of differing	
predominant land use	59
Figure 5.12 Microplastic concentration in major ocean gyres	61
Figure 5.13 Schematic of the physical processes that affect the transport of plastic particles in oceans	62
Figure 5.14 Sampling location, quantity and type of microplastic fibers found in sediment from	
major oceans	64
Figure 5.15 Microplastics from the seafloor of the Tyrrhenian Sea	65

Figure 5.16 Possible pathways for microplastics to enter and be transported through groundwater	67
Figure 5.17 Appearance of the deposition and stratification of plastic materials in a Spanish canyon	69
Figure 5.18 Microplastic transport to and from agricultural lands	70
Figure 5.19 An illustration of atmospheric transport of microplastics	72
Figure 5.20 Potential expulsion of microplastics into the atmosphere from the ocean surface	74
Figure 5.21 Different types of microplastics found in aquatic species in Portugal	77
Figure 5.22 Human exposure to microplastics	79
Figure 5.23 Scheme of the potential mechanisms for plastic microfiber intake for humans	80
Figure 6.1 Structures of DEHP, DBP and DEP	86
Figure 6.2 Structure of BPA	87
Figure 6.3 Endocrine and reproductive disruption by BPA	88
Figure 6.4 Structure of PFOA and PFOS	89
Figure 6.5 Structure of PBDEs and HBCD	92
Figure 6.6 Metal concentrations for each plastic type after 12 months in San Diego Bay by	32
Rochman et al. (2014)	94
	97
Figure 6.7 Different colored microplastics found in oceans and other aquatic habitats	
Figure 6.8 Potential microbe-microplastic interactions and biofilm formation	99
Figure 6.9 Potential interactions between microbes with microplastics in marine ecosystems and	101
risks	101
Figure 6.10 Potential effects of microplastic interaction with the cardiovascular system	105
Figure 6.11 Images of microplastics identified in human lung tissue samples by Jenner et al. (2022)	107
Figure 6.12 Accumulation of PS-MPs in peripheral tissues from young and old mice	109
Figure 6.13 Potential effects of microplastics in plants	114
Figure 6.14 GHG emissions from plastics (2019)	118
Figure 6.15 GHG emissions from plastic by lifecycle stage (2015–19)	119
Figure 6.16 Potential effect of climate change parameters on microplastic fate and transport	122
Figure 6.17 Top 20 coastal regions ranked by mass of mismanaged plastic waste in 2025	124
Figure 6.18 Overview of the costs included in the minimum lifetime cost of plastic produced	127
Figure 6.19 The inputs and outputs of landfills with an environmental impact	129
Figure 6.20 The inputs and outputs of incineration plants with an environmental impact	130
Figure 7.1 Unintentional microplastic releases in the EU	142
Figure 8.1 Comparison of the performance of different techniques	154
Figure 8.2 Schematic of microplastic removal from water by the electrocoagulation process	156
Figure 8.3 Photodegradation of microplastics	157
Figure 8.4 Photocatalytic degradation of microplastics	158
Figure 8.5 Formation and succession in the plastisphere	163
Figure 8.6 Mechanism of microplastic biodegradation	164
Figure 8.7 Enzymatic degradation mechanism of PET	166
Figure 8.8 Potential bacteria-mediated degradation pathways of PET and PVC	168
Figure 8.9 Stages of drinking water treatment	171
Figure 8.10 A BFD of a typical WWTP for microplastic removal	172
Figure 8.11 The waste management hierarchy	176
Figure 8.12 Steps in plastic waste recycling	178
Figure 8.13 Schematic illustration of the mechanical and chemical recycling of plastic waste	179
Figure 8.14 Recycling rate of plastic packaging waste in the EU	180
Figure 8.15 A BFD of PET plastic waste recycling	181
Figure 8.16 Stages of PET waste processing for application in building and construction	182
Figure 8.17 First recycled glass and plastic road in NSW at Engadin	184
	186
Figure 8.18 Plastic waste sent to landfills between 2000 and 2019	
Figure 8.19 Lifecycle perspective for identifying sustainability benefits for plastics	189
Figure 8.20 A bioretention cell	201
Figure 8.21 A constructed wetland	202

Glossary

ABS Acrylonitrile-butadiene-styrene

ACH Acetylcholine

ADHD Attention-deficit/hyperactivity disorder

ALK Alkyd

AM Additive manufacturing AOP Advanced oxidation process ASR Aquifer storage and recovery ATP Adenosine triphosphate ΑV Arginine vasopressin BCE Blue carbon ecosystem BFD Block flow diagram BFR Brominated flame retardant **BHT** Butylated hydroxytoluene

BHET Bis(2-hydroxyethyl) terephthalate

BPA Bisphenol A
BWP Brake wear particle
°C Degrees Celsius
CC Cornado Cays

CEC Cation exchange capacity

CEPA Canadian Environmental Protection Act

CFC Chlorofluorocarbon
cm Centimeters
CoA-SH Coenzyme A

COPD Chronic obstructive pulmonary disease

CPCB Central Pollution Control Board

CPP Casted polypropylene

Da Daltons

DAPI 4',6-diamidino-2-phenylindole

DBP Dibutyl phthalate

DCD 1,2-Dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate

DCHP Dicyclohexyl phthalate

DDT Dichloro-diphenyl-trichloroethane

DEHP Di(2-ethylhexyl) phthalate

DEP Diethyl phthalate
DIHP Diisoheptyl phthalate
DINP Diisononyl phthalate
\$\frac{1}{3}\text{ Dollars per square meter} \text{ DMEP} \text{ Bis(2-methoxyethyl) phthalate}

DNA Deoxyribonucleic acid

DOA Dioctyl adipate

DOC Dissolved organic carbon

DOP Dioctyl phthalate DPP Dipentyl phthalate \$/t Dollars per metric ton DVD Digital video disc EΑ **Environment Assembly** EC **European Commission ECHA** European Chemicals Agency **EDC** Endocrine-disrupting chemicals **EFSA European Food Safety Authority**

EG Ethylene glycol
EOL End-of-life

EPP Expandable polypropylene EPR (in Figure 3.4) Ethylene-propylene rubber

EPR Extended producer responsibility
EPS Extracellular polymeric substance

EU European Union
EVA Ethylene-vinyl acetate

FAO Food and Agriculture Organization of the United Nations

FDA Food and Drug Administration fibers/m⁻² day⁻¹ Fibers per square meter per day FSH Follicle-stimulating hormone

FSSAI Food Safety and Standards Authority of India

g Grams

GAC Granular activated carbon

GC Glucocorticoid

g/cm³ Grams per cubic centimeter

GC-MS Gas chromatography-mass spectrometry

GDP Gross domestic product

GESAMP International Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection

GHG Greenhouse gas
GI Gastrointestinal (tract)
g/kg Grams per kilogram
g/ml Grams per milliliter

Gt Gigatons

GtCO₂eq Billion metric tons of CO₂ equivalent

Gt/y Gigatons per year **GWP** Global warming potential HAC High-ambition coalition **HBCD** Hexabromocyclododecane **HDPE** High-density polyethylene **HELCOM** Helsinki Convention HIC High-income country HP House Paper

HPLC High-performance liquid chromatography
HVAC Heating, ventilation and air conditioning
IARC International Agency for Research on Cancer

IMO International Maritime OrganizationINC Intergovernmental Negotiating Committee

IQR Interquartile range

ISO International Organization for Standardization

items/kg Items per kilogram

ITRC Interstate Technology Regulatory Council

IV Intravenous kg Kilograms

kgCO₂eq Kilograms of CO₂ equivalent

kg/y Kilograms per year
km² Square kilometers
LCA Lifecycle assessment
LD Legislative document

LDIR Laser direct infrared imaging
LDL Low-density lipoprotein
LDPE Low-density polyethylene
LH Luteinizing hormone
LIC Low-income country

LRTAP Long-range Transboundary Air Pollution µ-FTIR Fourier-transform infrared spectroscopy

µg/L Micrograms per liter µg/g Micrograms per gram

μm Micrometers

μ-Raman Raman spectro-microscopy

m Meters
m³ Cubic meters
MA Muconic acid

MAPK Mitogen-activated protein kinase MAR Managed aquifer recharge

MARPOL 73/78 The International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978

Max Maximum

MBI Market-based instrument MBR Membrane bioreactor

m⁻² day⁻¹ (Particles) per square meter per day

mg/kg Milligrams per kilogram
mg/L Milligrams per liter

MHET Mono-(2-hydroxyethyl) terephthalate

MHETase Mono-(2-hydroxyethyl)terephthalic acid hydrolase

Min Minimum
ml Milliliters
mm Millimeters
Mt, MMt Million metric tons

MMtCO₂eq Million metric tons of CO₂ equivalent

MMt/y Million metric tons per year

MoEFCC Ministry of Environment, Forest and Climate Change

MoEJ Ministry of the Environment, Japan

MoES Ministry of Earth Sciences

MoFAH&D Ministry of Fisheries, Animal Husbandry and Dairying

MP Microplastic

MSFD Marine Strategy Framework Directive

MSW Municipal solid waste
Mt Thousand metric tons
N North (in N Atlantic)
NA Not available

N/A Not applicable

NAAQS National Ambient Air Quality Standards

nd Non-detect NE Northeast

ng/g Nanograms per gram

ng/kg-bw/day Nanograms per kilogram of body weight per day

ng/ml Nanograms per milliliter

NHM Natural History Museum, London

nm Nanometers

NMF Nimitz Marine Facility

NOAA National Oceanic and Atmospheric Administration

NSW North South Wales

OECD Organisation for Economic Co-operation and Development

OEHHA Office of Environmental Health Hazard Assessment

OpMic Optical microscopy
P Microplastic present

PA Polyamide
PAA Polyacrylic acid

PAC Polymeric additives and coatings PAH Polycyclic aromatic hydrocarbon

PAN Polyacrylonitrile particles/kg Particles per kilogram

particles/(m⁻² day⁻¹) Particles per square meter per day

PB Polybutylene

PBDE Polybrominated diphenyl ether
PBS Polybutylene succinate
PBT Polybutylene terephthalate

PC Polycarbonate
PCA Protocatechuic acid
PCB Polychlorinated biphenyl
PCL Polycaprolactone

PCOS Polycystic ovarian syndrome

pcs/L Total discharge of microplastics per liter

PE Polyethylene

PEF Polyethylene furanoate
PEG Polyethylene glycol
PEI Polyetherimide

PEP Process Economics Program

PES Polyester

PET Polyethylene terephthalate

PETase Polyethylene terephthalate hydrolase PFAS Per- and polyfluoroalkyl substances

PFBA Perfluorobutanoic acid
PFDA Perfluorodecanoic acid
PFHxS Perfluorohexane sulfonic acid
PFNA Perfluorononanoic acid
PFOA Perfluorooctanoic acid
PFOS Perfluorooctane sulfonic acid

PGA Polyglycolic acid

PGPR Plant growth-promoting rhizobacteria

PHA Polyhydroxyalkanoate
PHB Polyhydroxybutyrate
PLA Polylactic acid

PMMA Polymethyl methacrylate
POP Persistent organic pollutant

PP Polypropylene

PPE Personal protective equipment

PS Polystyrene

PTFE Polytetrafluoroethylene

PU, PUR Polyurethane
PVA Polyvinyl acetate
PVC Polyvinyl chloride

Pyr-GC/MS Pyrolysis-gas chromatography mass spectrometry

RAC Committee for Risk Assessment R&D Research and development

REACH Registration, Evaluation and Authorisation of Chemicals

ROS Reactive oxygen species

RY Rayon

SA Styrene acrylonitrile
SBR Styrene-butadiene rubber
SDG Sustainable Development Goal

SEAC Committee for Socio-economic Analysis

SEM Scanning electron microscopy

SEM-EDS Scanning electron microscopy with energy dispersive spectroscopy

SI Shelter Island
SOM Soil organic matter
SOS 2.0 Save Our Seas Act 2.0

SUPPR Single-use Plastics Prohibition Regulations

SW Southwest t Metric tons

TBBPA Tetrabromobisphenol A TCA Tricarboxylic acid cycle

TCCP Tris(2-chlorisopropyl)phosphate

TED-GC/MS

Thermal extraction and desorption gas chromatography/mass spectrometry

TNNP Tris(nonylphenyl)phosphite

TPA Terephthalic acid

TRWP Tire and road wear particle

TWP Tire wear particle
t/y Metric tons per year
UB University of Barcelona

UN United Nations

UNEA United Nations Environment Assembly
UNEP United Nations Environment Programme
US EPA US Environmental Protection Agency

UV Ultraviolet

VCoC Voluntary Code of Conduct on the Sustainable Use and Management of Plastics in Agriculture

WHO World Health Organization

Ws Sinking velocity w/w Weight by weight

WWF World Wide Fund for Nature (formerly World Wildlife Fund)

WWTP Wastewater treatment plant

Abstract

Microplastics are solid synthetic plastic particles, typically between 1 nanometer (nm) and 5 millimeters (mm), and composed of mixtures of polymers, functional additives, and other intentionally and unintentionally added chemicals. They are often intentionally manufactured and added to products for specific purposes, but they are also unintentionally formed from the fragmentation of macroplastic debris in the environment. Research shows that microplastics are widely distributed in the environment. They have been found in marine, freshwater, and terrestrial ecosystems, in indoor and outdoor air, and in seafood, plants, salt, and bottled water. Evidence is also growing on the potential adverse effects on human and wildlife health, as well as the social, ecological, and ecosystem service impacts.

As public concern about microplastics grows, the regulatory landscape for these contaminants has also changed. Microplastics are more frequently mentioned in policy frameworks and regulations today, with several countries banning the manufacture and sale of personal care products containing microplastics. Others have introduced restrictions on the sale of single-use plastics, aiming to reduce plastic waste from entering the environment. If the momentum is maintained, we may see regulations targeting reductions in plastic production, enhancing recycling and waste management, and investing in sustainable alternatives.

This review in the Process Economics Program (PEP)'s Environment and Safety Series consolidates the current state of microplastic research from information available in the public literature and answers the following questions:

- What are microplastics?
- Why should we be concerned about microplastics?
- Where are microplastics used and from where do they originate?
- How do microplastics enter the environment?
- What are the human, environmental, and socioeconomic effects of microplastics?
- What is the regulatory landscape surrounding microplastics?
- What are the ways to abate and mitigate microplastic pollution?

The review also emphasizes the necessity of taking action to address microplastic pollution to mitigate its potential risks to human and environmental health. Additionally, it calls for interdisciplinary research and collaboration, building scientific justification for addressing the entire plastic lifecycle, including interventions at the source, development of alternatives, and strong international regulatory frameworks to manage the transboundary microplastic pollution.

Contacts

Rathi R

Associate Analyst, Process Economics Program rathi.r@spglobal.com

Rajiv Narang

Executive Director, Global Head Process Economics Program rajiv.narang@spglobal.com

CONTACTS

Europe, Middle East, Africa: +44 (0) 203 367 0681

Americas: +1 800 332 6077 Asia-Pacific: +60 4 296 1125

www.spglobal.com/commodityinsights/en www.spglobal.com/en/enterprise/about/contact-us.html

© 2025 by S&P Global Inc. All rights reserved.

S&P Global, the S&P Global logo, S&P Global Commodity Insights, and Platts are trademarks of S&P Global Inc. Permission for any commercial use of these trademarks must be obtained in writing from S&P Global Inc.

You may view or otherwise use the information, prices, indices, assessments and other related information, graphs, tables and images ("Data") in this publication only for your personal use or, if you or your company has a license for the Data from S&P Global Commodity Insights and you are an authorized user, for your company's internal business use only. You may not publish, reproduce, extract, distribute, retransmit, resell, create any derivative work from and/or otherwise provide access to the Data or any portion thereof to any person (either within or outside your company, including as part of or via any internal electronic system or intranet), firm or entity, including any subsidiary, parent, or other entity that is affiliated with your company, without S&P Global Commodity Insights' prior written consent or as otherwise authorized under license from S&P Global Commodity Insights. Any use or distribution of the Data beyond the express uses authorized in this paragraph above is subject to the payment of additional fees to S&P Global Commodity Insights.

S&P Global Commodity Insights, its affiliates and all of their third-party licensors disclaim any and all warranties, express or implied, including, but not limited to, any warranties of merchantability or fitness for a particular purpose or use as to the Data, or the results obtained by its use or as to the performance thereof. Data in this publication includes independent and verifiable data collected from actual market participants. Any user of the Data should not rely on any information and/or assessment contained therein in making any investment, trading, risk management or other decision. S&P Global Commodity Insights, its affiliates and their third-party licensors do not guarantee the adequacy, accuracy, timeliness and/or completeness of the Data or any component thereof or any communications (whether written, oral, electronic or in other format), and shall not be subject to any damages or liability, including but not limited to any indirect, special, incidental, punitive or consequential damages (including but not limited to, loss of profits, trading losses and loss of goodwill).

ICE index data and NYMEX futures data used herein are provided under S&P Global Commodity Insights' commercial licensing agreements with ICE and with NYMEX. You acknowledge that the ICE index data and NYMEX futures data herein are confidential and are proprietary trade secrets and data of ICE and NYMEX or its licensors/suppliers, and you shall use best efforts to prevent the unauthorized publication, disclosure or copying of the ICE index data and/or NYMEX futures data.

Permission is granted for those registered with the Copyright Clearance Center (CCC) to copy material herein for internal reference or personal use only, provided that appropriate payment is made to the CCC, 222 Rosewood Drive, Danvers, MA 01923, phone +1-978-750-8400. Reproduction in any other form, or for any other purpose, is forbidden without the express prior permission of S&P Global Inc. For article reprints contact: The YGS Group, phone +1-717-505-9701 x105 (800-501-9571 from the U.S.).

For all other queries or requests pursuant to this notice, please contact S&P Global Inc. via email at ci.support@spglobal.com